Module HawkesPyLib.core.compensator
Functions
- def uvhp_expo_compensator(sample_vec: numpy.ndarray, mu: float, eta: float, theta: float) ‑> numpy.ndarray
- 
Computes the compensator for a Hawkes procss with single exponential kernel. Args- sample_vec:- np.ndarray
- numpy array of timestamps. Must be non-negative and sorted in ascending order.
- mu:- float
- Background intensity of the Hawkes process. mu > 0
- eta:- float
- Branching ratio of the Hawkes process. 0 < eta < 1
- theta:- float
- Decay speed of the exponential memory kernel. theta > 0
 Returns- np.ndarray
- numpy array of timestamps
 
- def uvhp_approx_powl_compensator(sample_vec: numpy.ndarray, mu: float, eta: float, alpha: float, tau: float, m: float, M: int) ‑> numpy.ndarray
- 
Computes the compensator for a Hawkes procss with approximate power-law kernel. Args- sample_vec:- np.ndarray
- numpy array of timestamps. Must be non-negative and sorted in ascending order.
- mu:- float
- Background intensity of the Hawkes process. mu > 0
- eta:- float
- Branching ratio of the Hawkes process. 0 < eta < 1
- alpha:- float
- Power-law coefficient. alpha > 0
- tau:- float
- Decay speed of the kernel. tau > 0
- m:- float
- Memory kernel parameter, m > 0
- M:- int
- Memory kernel parameter, M > 0
 Returns- np.ndarray
- numpy array of timestamps
 
- def uvhp_approx_powl_cut_compensator(sample_vec, mu, eta, alpha, tau, m, M) ‑> numpy.ndarray
- 
Computes the compensator for a Hawkes procss with approximate power-law kernel with cutoff. Args- sample_vec:- np.ndarray
- numpy array of timestamps. Must be non-negative and sorted in ascending order.
- mu:- float
- background intensity of the Hawkes process
- eta:- float
- Branching ratio of the Hawkes process. 0 < eta < 1
- alpha:- float
- Power-law coefficient. alpha > 0
- tau:- float
- Decay speed of the kernel. tau > 0
- m:- float
- Memory kernel parameter, m > 0
- M:- int
- Memory kernel parameter, M > 0
 Returns- np.ndarray
- numpy array of timestamps
 
- def uvhp_sum_expo_compensator(sample_vec: numpy.ndarray, mu: float, eta: float, theta_vec: numpy.ndarray) ‑> numpy.ndarray
- 
Computes the compensator for a Hawkes procss with P-sum exponential kernel. Args- sample_vec:- np.ndarray
- numpy array of timestamps. Must be non-negative and sorted in ascending order.
- mu:- float
- background intensity of the Hawkes process. mu > 0
- eta:- float
- Branching ratio of the Hawkes process. 0 < eta < 1
- theta_vec:- np.ndarray
- Decay speed of the P exponential memory kernels. theta_vec > 0 all values
 Returns- np.ndarray
- numpy array of timestamps