Module HawkesPyLib.core.compensator
Functions
def uvhp_expo_compensator(sample_vec: numpy.ndarray, mu: float, eta: float, theta: float) ‑> numpy.ndarray-
Computes the compensator for a Hawkes procss with single exponential kernel.
Args
sample_vec:np.ndarray- numpy array of timestamps. Must be non-negative and sorted in ascending order.
mu:float- Background intensity of the Hawkes process. mu > 0
eta:float- Branching ratio of the Hawkes process. 0 < eta < 1
theta:float- Decay speed of the exponential memory kernel. theta > 0
Returns
np.ndarray- numpy array of timestamps
def uvhp_approx_powl_compensator(sample_vec: numpy.ndarray, mu: float, eta: float, alpha: float, tau: float, m: float, M: int) ‑> numpy.ndarray-
Computes the compensator for a Hawkes procss with approximate power-law kernel.
Args
sample_vec:np.ndarray- numpy array of timestamps. Must be non-negative and sorted in ascending order.
mu:float- Background intensity of the Hawkes process. mu > 0
eta:float- Branching ratio of the Hawkes process. 0 < eta < 1
alpha:float- Power-law coefficient. alpha > 0
tau:float- Decay speed of the kernel. tau > 0
m:float- Memory kernel parameter, m > 0
M:int- Memory kernel parameter, M > 0
Returns
np.ndarray- numpy array of timestamps
def uvhp_approx_powl_cut_compensator(sample_vec, mu, eta, alpha, tau, m, M) ‑> numpy.ndarray-
Computes the compensator for a Hawkes procss with approximate power-law kernel with cutoff.
Args
sample_vec:np.ndarray- numpy array of timestamps. Must be non-negative and sorted in ascending order.
mu:float- background intensity of the Hawkes process
eta:float- Branching ratio of the Hawkes process. 0 < eta < 1
alpha:float- Power-law coefficient. alpha > 0
tau:float- Decay speed of the kernel. tau > 0
m:float- Memory kernel parameter, m > 0
M:int- Memory kernel parameter, M > 0
Returns
np.ndarray- numpy array of timestamps
def uvhp_sum_expo_compensator(sample_vec: numpy.ndarray, mu: float, eta: float, theta_vec: numpy.ndarray) ‑> numpy.ndarray-
Computes the compensator for a Hawkes procss with P-sum exponential kernel.
Args
sample_vec:np.ndarray- numpy array of timestamps. Must be non-negative and sorted in ascending order.
mu:float- background intensity of the Hawkes process. mu > 0
eta:float- Branching ratio of the Hawkes process. 0 < eta < 1
theta_vec:np.ndarray- Decay speed of the P exponential memory kernels. theta_vec > 0 all values
Returns
np.ndarray- numpy array of timestamps