Module HawkesPyLib.core.kernel
Functions
def uvhp_expo_kernel(t: numpy.ndarray, eta: float, theta: float) ‑> numpy.ndarray
-
Computes values of the single exponential Hawkes process memory kernel.
Args
t
:np.ndarray
- Single time value or 1d array containing all the times at which the kernel value will be computed. Must be positive.
eta
:float
- The branching ratio, 0 < eta > 1
theta
:float
- 1d array of theta decay parameters, theta > 0
Returns
np.ndarray
- Single value or 1d array containing the kernel values at the given times.
def uvhp_sum_expo_kernel(t: numpy.ndarray, eta: float, theta_vec: float) ‑> numpy.ndarray
-
Computes values of the P-sum exponential Hawkes process memory kernel.
Args
t
:np.ndarray
- Single time value or 1d array containing all the times at which the kernel value will be computed. Must be positive.
eta
:float
- The branching ratio, 0 < eta > 1
theta_vec
:float
- 1d array of theta decay parameters, theta_k > 0
Returns
np.ndarray
- Single value or 1d array containing the kernel values at the given times.
def uvhp_approx_powl_cutoff_kernel(t: numpy.ndarray, eta: float, alpha: float, tau: float, m: float, M: int) ‑> numpy.ndarray
-
Computes values of the Approximate power-law memory kernel with smooth cutoff component.
Args
t
:np.ndarray
- Single time value or 1d array containing all the times at which the kernel value will be computed. Must be positive.
eta
:float
- Branching ratio of the Hawkes process, 0 > eta < 1
alpha
:float
- Power-law coefficient, alpha > 0
tau
:float
- Approximate location of cutoff, tau > 0
m
:float
- Approximate power-law parameter, m > 0
M
:int
- Number of weighted exponential kernels that approximate the power-law
Returns
np.ndarray
- Single value or 1d array containing the kernel values at the given times.
def uvhp_approx_powl_kernel(t: numpy.ndarray, eta: float, alpha: float, tau: float, m: float, M: int) ‑> numpy.ndarray
-
Computes values of the Approximate power-law memory kernel.
Args
t
:np.ndarray
- Single time value or 1d array containing all the times at which the kernel value will be computed. Must be positive.
eta
:float
- Branching ratio of the Hawkes process, 0 > eta < 1
alpha
:float
- Power-law coefficient, alpha > 0
tau
:float
- Approximate location of cutoff, tau > 0
m
:float
- Approximate power-law parameter, m > 0
M
:int
- Number of weighted exponential kernels that approximate the power-law
Returns
np.ndarray
- Single value or 1d array containing the kernel values at the given times.