Module HawkesPyLib.core.kernel

Functions

def uvhp_expo_kernel(t: numpy.ndarray, eta: float, theta: float) ‑> numpy.ndarray

Computes values of the single exponential Hawkes process memory kernel.

Args

t : np.ndarray
Single time value or 1d array containing all the times at which the kernel value will be computed. Must be positive.
eta : float
The branching ratio, 0 < eta > 1
theta : float
1d array of theta decay parameters, theta > 0

Returns

np.ndarray
Single value or 1d array containing the kernel values at the given times.
def uvhp_sum_expo_kernel(t: numpy.ndarray, eta: float, theta_vec: float) ‑> numpy.ndarray

Computes values of the P-sum exponential Hawkes process memory kernel.

Args

t : np.ndarray
Single time value or 1d array containing all the times at which the kernel value will be computed. Must be positive.
eta : float
The branching ratio, 0 < eta > 1
theta_vec : float
1d array of theta decay parameters, theta_k > 0

Returns

np.ndarray
Single value or 1d array containing the kernel values at the given times.
def uvhp_approx_powl_cutoff_kernel(t: numpy.ndarray, eta: float, alpha: float, tau: float, m: float, M: int) ‑> numpy.ndarray

Computes values of the Approximate power-law memory kernel with smooth cutoff component.

Args

t : np.ndarray
Single time value or 1d array containing all the times at which the kernel value will be computed. Must be positive.
eta : float
Branching ratio of the Hawkes process, 0 > eta < 1
alpha : float
Power-law coefficient, alpha > 0
tau : float
Approximate location of cutoff, tau > 0
m : float
Approximate power-law parameter, m > 0
M : int
Number of weighted exponential kernels that approximate the power-law

Returns

np.ndarray
Single value or 1d array containing the kernel values at the given times.
def uvhp_approx_powl_kernel(t: numpy.ndarray, eta: float, alpha: float, tau: float, m: float, M: int) ‑> numpy.ndarray

Computes values of the Approximate power-law memory kernel.

Args

t : np.ndarray
Single time value or 1d array containing all the times at which the kernel value will be computed. Must be positive.
eta : float
Branching ratio of the Hawkes process, 0 > eta < 1
alpha : float
Power-law coefficient, alpha > 0
tau : float
Approximate location of cutoff, tau > 0
m : float
Approximate power-law parameter, m > 0
M : int
Number of weighted exponential kernels that approximate the power-law

Returns

np.ndarray
Single value or 1d array containing the kernel values at the given times.